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Abstract
Machine Learning (ML) models have revolutionized health-
care diagnostics but are vulnerable to adversarial attacks,
where subtle input modifications can lead to inaccurate diag-
nosis. In this work, we evaluate the vulnerability of AI-driven
medical diagnostics to gradient-based attacks – Universal Ad-
versarial Perturbation (UAP) and Projected Gradient Descent
(PGD). We find a roughly 36% and 60% drops in accuracy
in popular deep learning models like VGG16 and Efficient-
NetB0 respectively due to the adversarial perturbations. To
mitigate these threats, we build a simple yet accurate detection
framework that is 95% accurate for identifying UAP pertur-
bations and 72% for PGD perturbations. Our findings support
the urgent need for robust defenses to secure AI systems in
high-stakes areas such as healthcare.

1 Introduction

Machine Learning (ML) models have become an indispens-
able part of modern healthcare, significantly enhancing the
speed, accuracy, and efficiency of medical diagnoses. In radi-
ology, these models can easily identify statistical patterns in
X-Rays, MRIs and CT scans to diagnose diseases like COVID-
19, pneumonia, and various cancers. Healthcare providers also
use AI models with tabular data. By combining biochemical
data such as Fasting Blood Sugar (FBS) with lifestyle data
such as physical activity, for example, ML models can be
used to predict and diagnose diabetes. However, while these
models can quickly process vast amounts of data and identify
patterns not immediately apparent to human clinicians, they
also introduce new risks. Medical image diagnostic systems
are easily fooled by adversarial examples. Adversarial exam-
ples exploit the intricate decision boundaries that ML models
learn during training. By applying small, carefully crafted
perturbations to an image, adversaries can manipulate the
model’s output without significantly altering the image.

The growing accessibility of medical data further amplifies
these risks. In many healthcare systems, patients now have
direct access to their own medical data, including diagnostic

images, via patient portals, second opinion services, or by
request. While this accessibility empowers patients by giving
them more control over their health, it also creates a potential
avenue for misuse. In particular, a patient could intention-
ally modify their medical data—such as altering an X-ray
image—to manipulate the diagnostic outcome in their favor.
This manipulation might be motivated by a variety of reasons,
such as gaining access to specific medical treatments, qualify-
ing for government assistance programs, or obtaining financial
benefits. For example, a diagnosis of COVID-19 could allow
a patient to receive government support programs, specialized
treatments, or paid sick leave. Similarly, patients may alter
their diagnosis to gain eligibility for subsidized medications,
participation in clinical trials, or access to disability benefits.
Being classified as having diabetes for example may allow pa-
tient’s to be prescribed Ozempic or other lucrative diabetese
drugs at substantial discounts. These motivations, coupled
with the relative ease with which adversarial examples can
be generated, raise critical concerns regarding the security of
AI-driven medical diagnostic systems.

In this work, we aim to emphasize the risks posed by adver-
sarial examples in medical diagnostics. We demonstrate how
an adversary could easily manipulate their own X-ray scans
to change their medical diagnosis (e.g. to obtain a COVID-19
positive diagnosis) using two gradient-based attacks: Uni-
versal Adversarial Perturbation (UAP) [23] and Projected
Gradient Descent (PGD) [4]. We show how these attacks
lead significant drops in accuracies across two popular deep
learning architectures - VGG16 [19] and EfficientNetB0 [20].
This attack vector poses a highly practical and significant
threat to healthcare providers. It is motivated both personally
and financially, is easy to execute with low barriers and is
highly scalable. By distributing tampered data to multiple
healthcare providers simultaneously, attackers significantly
increase their chances of achieving favorable outcomes. We
review existing methods for mitigating such attacks and dis-
cuss the limitations of each method. Furthermore, in the field
of medical X-ray imaging, much of the work in the literature,
such as in [13] [7] [8], has focused on only analyzing the
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impact on models of perturbations produced by UAPs and
PGDs. We go one step beyond by not only analyzing the im-
pact of these attacks but also proposing a simple, lightweight
but highly accurate detection framework designed to iden-
tify when X-ray images have been perturbed. This enables
healthcare professionals to detect adversarial examples in the
first place before beginning to analyze them. Furthermore,
we also explore the generalizability of our detector trained
on UAP to PGD, thereby experimenting the effectiveness of
our detection method against a variety of adversarial attacks.
Overall, our paper contributes to the growing body of research
on improving the security and robustness of AI systems in
healthcare.

2 Background and Related Work

2.1 Adversarial Examples in Images

As many have pointed out, deep learning models are highly
vulnerable to adversarial attacks, especially in image process-
ing. Attacks can be broadly categorized into white-box attacks
and black-box attacks. White-box attacks assume complete
knowledge of the target model, including its architecture, pa-
rameters, and training data. Black-box attacks, in contrast
assume no knowledge of the target model. Thus, while black-
box attacks may provide a more realistic threat model, they
are also more difficult to implement.

Adversaries may want to perform two types of attacks on
ML models: targeted and untargeted. In a targeted attack, the
goal is to manipulate input data to force the model to predict
a specific incorrect class, such as making a COVID-19 X-
ray appear normal. In contrast, an untargeted attack aims to
cause any misclassification without preference for a particular
outcome; for instance, it may result in a COVID-19 X-ray
being classified as either normal or pneumonia. Untargeted
attacks are generally easier to implement since they do not
require controlling the specific misclassification outcome.
While untargeted attacks may suffice in many scenarios, some
adversaries may need to target a specific class to achieve
their objectives. Ultimately, the choice between targeted and
untargeted attacks depends on the adversary’s goals and the
specific context of the situation.

Many of the most successful attacks are untargeted white-
box attacks that leverage model gradients. Goodfellow et al.
were the first to propose gradient based attacks with their
Fast Gradient Sign Method (FGSM). Their attack generates
adversarial examples by applying a small perturbation in the
direction of the gradient of the loss with respect to the in-
put image [5]. While an impactful idea, the FGSM’s effec-
tiveness can be easily defended. The Projected Gradient De-
scent (PGD) attack improves on FGSM by applying multiple
smaller perturbations iteratively [10]. This technique works
surprisingly well and PGD is considered one of the strongest
first-order attacks. There also exist non-gradient-based attacks.

DeepFool for example attempts to identify a model’s decision
boundaries and apply the smallest perturbation to shift an
example to a different decision boundary [12]. The authors
emphasize the subtly of these perturbations compared to the
aforementioned gradient based approaches.

When direct access to a model is not feasible black box
attacks can be a successful alternative. Many of the most
successful black box attacks attempt to estimate the victim
model’s gradients and use them to perform gradient based
attacks. One approach to estimate the victim’s gradients is
by training a surrogate model and use the gradients of this
model directly [9]. These transfer-based attacks can be quite
effective and difficult to defend against. Another method to es-
timate gradients is with query-based attacks [2]. These attacks
query a black-box model many times and approximate gradi-
ents with finite-differences methods. If this is feasible in the
threat model, and many queries can be performed efficiently,
query-based attacks can also be quite effective.

In healthcare, adversaries can’t observe the hospital’s
model and are thus limited to black-box attacks. Furthermore,
querying the model many times is unrealistic. Our methodol-
ogy assumes access to a publicly available dataset, enabling
an adversary to train a surrogate model that approximates the
gradients of the hospital’s model. With the increasing avail-
ability of public medical datasets, our methodology is both
highly practical and adaptable to a wide range of scenarios.

2.2 Adversarial Defenses on Images

Despite extensive research in controlled settings, real-world
defenses against adversarial attacks remain challenging. A
major hurdle is the transferability of adversarial examples,
where perturbations effective on one model can often succeed
on others [21]. A common approach to defending against
adversarial examples is with adversarial training [5]. This in-
volves augmenting the training data with adversarial examples
to expose the model to potential attacks. While this can im-
prove robustness against attacks similar to those seen during
training, it’s not a universal solution. Furthermore, training
in this way can be computationally expensive and negatively
impact the model performance on unperturbed examples. An-
other common approach is to use knowledge distillation [14].
By training a model to predict soft label outputs from another
model, gradients become less informative to prospective at-
tackers. However, such is also computationally expensive as
it requires training both a teacher and student model. Fur-
thermore, regularizing the teacher model in this way can also
impact performance. Another approach is adversarial detec-
tion [11]. Rather than try to make a model robust against
adversarial examples, detection involves training an auxiliary
model to detect which examples have been altered. These
models can be used in conjunction with existing models with-
out impacting their performance. They can also be trained
easily and tuned to a desired false positive rate. Given the
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high impact of incorrect diagnosis and the low cost for a hos-
pital’s to classify images as being altered when it’s really not,
detection methods are a promising solution. In our work, we
demonstrate how detection systems can be trained easily and
yield impressive results.

2.3 Adversarial Attacks in Medical Imaging
Adversarial attacks are an important consideration in medical
imaging due to the critical nature of the domain. A variety of
the aforementioned attack strategies. FGSM and PGD have
been adapted to fool models trained on tasks such as tumor
detection and disease classification [16]. In the black-box set-
ting, transfer and query-based attacks have also been shown
to be effective against medical imaging systems [6]. These
findings emphasize the need for robust and domain-specific
defenses to protect medical imaging applications from ad-
versarial threats. Given the high impact of this domain, de-
fending against these attacks is a prominent area of research.
Many features of healthcare systems seem to signify a do-
main specific solution is necessary. Popular methods such as
knowledge distillation and adversarial training can negatively
impact critical diagnosis decisions making them less ideal
in this high impact setting. Researchers have instead looked
to utilize preprocessing methods, such as noise filtering or
adversarial perturbation removal, to restore tampered images
to their original state without degrading diagnostic quality [1].
Detection based systems are also prominent approach in the
medical realm as they preserve model performance on clean
data, have low computational overhead, better interpretability
and maintain compatibility with existing models [3]. There
seems to be little downside in training a detection system
and for these reasons this is the approach we recommend to
healthcare practitioners.

3 Threat Model

We consider a scenario where an adversary gains access to
their own chest X-ray scan. They can easily obtain this scan
by requesting a hard copy or digital version from a healthcare
provider. This is a standard practice for patients seeking sec-
ond opinions or maintaining personal medical records. The
adversary’s objective is to maliciously modify this scan and
submit it to another healthcare provider, tricking their diag-
nostic system into classifying the image as COVID-positive.
Motivations for such an attack may include obtaining paid sick
leave, accessing medical treatments, or exploiting pandemic-
related benefits. By altering their X-ray, the adversary aims to
achieve these goals without detection, presenting a significant
security challenge for AI-driven diagnostic systems.

In this threat model, we assume the adversary has access
to a dataset containing chest X-rays paired with medical diag-
noses. With the increasing democratization of ML resources
on platforms like Kaggle and HuggingFace, this assump-

(a) Original X-ray Image (b) Augmented X-ray Image

Figure 1: Original versus Augmented X-ray Image

tion is realistic and reflects current trends in data availabil-
ity [22]. The adversary’s dataset need not match the one used
by healthcare providers; we hypothesize that fundamental fea-
tures used for COVID-19 classification—such as lung opacity
patterns—are consistent across datasets. While variations in
imaging equipment or procedures may introduce differences
in scale, resolution, or orientation such don’t impact the core
features required to trick a classification model.

With a training dataset, the adversary doesn’t require black
or white box access to the target’s model. Instead the adver-
sary attempts to exploit the consistencies present in COVID
Chest X-Rays by training a surrogate model to mimic the
victim’s model. Using their proxy model, the adversary gen-
erates adversarial examples through gradient-based attacks.
These carefully crafted perturbations are imperceptible to
human observers, ensuring that the altered X-ray appears un-
changed while successfully misleading the diagnostic model.
The attack leverages the surrogate model’s decision bound-
aries to manipulate the output, targeting the classification
label for COVID-19. Because the perturbations are based on
fundamental features of Chest X-Rays they are designed to
transfer effectively to any healthcare provider’s diagnostic
system. Moreover, this attack can be performed at scale by
submitting altered images to many providers simultaneously.
This significantly increases the likelihood of obtaining the
desired diagnosis from at least one provider, with no apparent
downside from the adversary’s perspective.

4 Experimental Setup

4.1 Dataset

We use a publicly available dataset from Kaggle [17], which
contains X-ray images categorized into three classes: COVID-
19, Pneumonia, and Normal. The goal is to train a model to
classify images accurately into these categories. The training
dataset contains 111 instances of COVID, and 70 instances
each of Normal and Pneumonia. The test set contains 66 total
examples, out of which 26 are COVID cases and 20 each are
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Normal and Pneumonia. This dataset presents a challenge
in terms of both size and class distribution, making it an
interesting case for evaluating adversarial attacks and the
robustness of AI models.

In real-world healthcare scenarios, hospitals often collabo-
rate using federated learning approaches to train ML models
across decentralized datasets without sharing sensitive patient
data. Instead of transmitting patient data to a central server,
hospitals train models locally on their own datasets and send
only the model updates to a central server; these updates are
aggregated to refine a global model. This approach allows
hospitals to build powerful models while maintaining patient
privacy and adhering to data protection regulations.

To simulate an environment where data coming from multi-
ple hospitals are leveraged to train a more powerful model, we
apply several data augmentation techniques such as random
horizontal flips, rotations and adding random color jitters. We
show an example of these augmentations in Fig. 1. Observe
how the augmented image is horizontally flipped, is rotated
by a small angle clockwise, and is also brighter than the origi-
nal image. In image classification tasks, these augmentations
are commonly employed to improve model robustness by ex-
panding the training data and enhancing decision boundaries.
In our case, these augmentations represent the variation in
imaging equipment and protocols across different hospitals.
We train the victim model (the hospital’s model) using multi-
ple augmented versions of the training data. In contrast, the
adversary’s model is trained using only the raw, training data.
This setup mimics real-world conditions and ensures the vic-
tim and adversarial models are not trained on the same data
distribution, which would otherwise make it easier to iden-
tify adversarial examples. We train our models for up to 50
epochs, each representing a full pass over the training set. We
employ early stopping with a patience of 5, halting training if
performance fails to improve for 5 consecutive epochs.

4.2 Implementation Details

We use two popular deep learning architectures that excel at
classification tasks to train our victim model – VGG16 and
EfficientNetB0.

We suspect that adversarial perturbations are most effective
if the victim model and the adversary’s model have the same
architecture. However, to simulate a realistic scenario, we as-
sume that the attacker does not have this knowledge. Thus, the
adversary uses a ResNet18 architecture to train their surrogate
model and generate adversarial perturbations. Given the con-
sistency in X-ray data, we hypothesize different architectures
rely on a similar set of high level features when making their
decisions, making adversarial attacks highly transferable.

To generate the adversarial perturbations, we leveraged the
gradients from the adversary’s model to perform gradient
based attacks. We implemented two attacks: Universal Ad-
versary Perturbations (UAP) and Projected Gradient Descent

(PGD) [23]. UAP generates a single perturbation vector that,
when added to multiple inputs, can cause misclassification.
Thus, it generates one perturbation that is effective across
multiple inputs, which makes it versatile, robust to transfor-
mations, and also transferrable across many neural networks.
Prior to being fed to a deep neural network, the adversarial
example may undergo transformations, such as changes in
pixel intensity and scaling when an X-ray hard-copy is being
scanned by the hospital. However, UAP attempts to build per-
turbations that are robust to these shifts. On the other hand,
PGD generates perturbations by optimizing for misclassifica-
tions while staying within a specified perturbation budget [4].
Both UAP and PGD rely on hyperparameters such as epsilon
(ε) and the maximum number of iterations, which we set to
0.01 and 10, respectively, following standard practices. The
value ε = 0.01 specifies the maximum allowable perturba-
tion magnitude, ensuring changes remain imperceptible. The
maximum iterations determine the number of steps the attack
takes to refine the perturbation for maximum effectiveness.
Additionally, PGD uses α, set to 1, which controls the step
size of perturbation adjustments at each iteration.

5 Results and Analysis

5.1 Adversarial Examples
Our next goal is to observe how effective our perturbations
are in impacting our two victim models. For UAP, the process
is simple. Based on the training set, we produce a single,
general perturbation that we now add to each of the examples
in our test set. For PGD, the approach is slightly different.
Since PGD generates a unique perturbation specific to each
input, we iterate through each example in the test set, generate
its specific perturbation, and add apply it. Ultimately, this
process yields two sets of perturbed images: one generated
by UAP and the other by PGD, which we then evaluate for
effectiveness.

As seen in Fig. 2, we observed significant drops in accu-
racy for both VGG16 and EfficientNetB0 under UAP and
PGD, with the drops being notably similar across attacks. We
hypothesize this high similarity could be due to choosing
the same hyperparameters for UAP and PGD to ensure con-
sistency as well as both being gradient based attacks. Most
importantly, despite the perturbations being generated on a
completely different surrogate model (ResNet18), they still
demonstrated high transferability by greatly impacting two
different deep learning architecture, highlighting the transfer-
ability of our adversarial perturbations.

We use confusion matrices to evaluate the robustness of
hospital models against these transfer attacks. We assign the
labels as follows:

• 0 = COVID

• 1 = Normal
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Figure 2: Model Accuracy Before and After Adversarial At-
tacks. This figure shows the original accuracy and the accu-
racy after being perturbed by UAP and PGD attacks for two
victim models - VGG16 and EfficientNetB0.

(a) VGG16: Clean Images (b) EfficientNet: Clean Images

Figure 3: Confusion matrices for VGG16 and EfficientNetB0
on clean images.

• 2 = Viral Pneumonia

In each confusion matrix, the y-axis represents the true la-
bel and the x-axis represents the predicted label. For instance,
in Fig. 3a, the first row shows that:

• 92% of all COVID cases were correctly classified as
COVID

• 4% of all COVID cases were incorrectly classified as
Normal

• 4% of all COVID cases were also incorrectly classified
as Viral Pneumonia

The confusion matrices for the clean images highlight our
model’s strong ability to detect ailments in patients across all
three classes.

In contrast, we show the confusion matrix for the perturbed
images using UAP on our models in Fig. 4. Observe that
misclassificaiton is severe across all all cases, across both
models. Notably, UAP on EfficientNetB0 misclassifies 100%
of Normal and Viral Pneumonia cases as COVID—ideal for
someone seeking a false positive. Similar patterns are ob-
served with PGD, so its confusion matrices are omitted.

(a) UAP on VGG16 (b) UAP on EfficientNetB0

Figure 4: Confusion matrices for VGG16 and EfficientNetB0
on UAP perturbed images.

5.2 Detection Network
The applied perturbations are so minimal that they are imper-
ceptible to the human eye. The clean and perturbed images
appear virtually identical, as illustrated in Figure 5.

(a) Clean X-Ray Image (b) Perturbed X-ray Image

Figure 5: Confusion matrices for VGG16 and EfficientNetB0
on UAP perturbed images.

This motivates us to train a model capable of classifying
X-ray images as either perturbed or unaltered. To achieve this,
we augment the training set to simulate X-rays from diverse
hospital settings. We then apply the previously generated UAP
perturbation to each image, creating a balanced dataset with
equal representation of clean and perturbed images.

Using this set of clean and perturbed images, we train a
simple deep learning model with only linear layers and ReLU
activation functions. To test out this detector, we pass our test
set, which the model has not seen before, to our trained model
and achieve a 95% accuracy; this is very impressive given
the simplicity of our model.

As a separate experiment, we take our test set, add PGD
perturbations, and see if the model can still differentiate be-
tween the PGD-perturbed images and the clean images. The
model still achieved an impressive 72% accuracy, despite
only being trained on UAP-perturbed images. This showcases
the generalization of our model to another gradient-based at-
tack, which is PGD. However, to make the model as robust as
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possible, training on images perturbed by a wide range of at-
tacks is crucial and we save this for future work. It might also
be interesting to explore more sophisticated models, such as
those using convolutional neural networks (CNNs) or Vision
Transformers [15], to improve our model’s detectability.

5.3 Model Interpretations with Grad-CAM

As another line of defense, hospitals can consider using vi-
sualization techniques like Grad-CAM (Gradient-weighted
Class Activation Mapping) [18] in addition to our detection
framework. Grad-CAM highlights the pixels that most af-
fect model predictions and can help clinicians visually assess
whether the model made its decision based on relevant fea-
tures or meaningless patterns caused by adversarial pertur-
bations. This would provide extra support in addition to our
detection framework to ignore adversarial images.

By taking the gradients of the target class flowing back to
the final convolutional layer, Grad-CAM generates a heatmap
on top of the original image. Warmer colors (e.g., red) rep-
resent areas with higher importance than those with cooler
colors (e.g., blue). Figure 6 highlights what regions of the
images were most focused on by the model when making the
predictions on a sample X-ray image. We observe significant
differences in heatmaps between the original and perturbed
images. For instance, the area around the neck appears warmer
in the original image, indicating it plays an important role
in the model’s prediction. In contrast, the neck area appears
cooler for the perturbed image, suggesting the model doesn’t
place much emphasis on it when making its prediction. This
type of decision-making, where regions expected to be sig-
nificant in diagnosis not appearing as important, may seem
illogical to healthcare professionals, helping them identify
that the original image has been altered.

6 Discussion

6.1 Implications for Healthcare

While we specifically study how an adversary can modify
their chest X-ray scans to be falsely diagnosed as having
COVID-19, our results have wide reaching impacts. With
small modifications, similar attacks can be applied to any
healthcare image based classifier so an adversary can receive
a desired diagnosis. Furthermore, we suspect that slightly dif-
ferent techniques could extend these vulnerabilities to tabular
medical AI models as well.

Our attacks only require access to widely available training
datasets, which are abundant in healthcare. Examples include
LUNA2016 for lung nodule detection, ISIC for melanoma
classification, and UCI’s Diabetes 130-US Hospitals dataset
for diabetes diagnosis and treatment outcomes, among many
others. A determined adversary could easily download one of
these datasets and manipulate the input data to influence the

Figure 6: Pixels deemed to be most significant by the model
in making predictions or the original (top) and perturbed
(bottom) images.

diagnosis in their favor.
Our study highlights the adversary’s motivations for ma-

nipulating COVID-19 chest X-rays, driven by personal or
financial incentives such as obtaining paid leave, disability
benefits, avoiding quarantine restrictions, or circumventing
travel disruptions due to a positive COVID-19 diagnosis. In
healthcare, financial motivations are significant. For instance,
the diabetes medication Ozempic (semaglutide), used for type
2 diabetes and weight management, costs nearly $1,000 per
month without insurance in the U.S. Insurance typically cov-
ers this drug for diabetes patients, making it financially ac-
cessible. Given the obesity epidemic and its association with
greater health risks than smoking or poverty, many individuals
are eager to access this life-saving medication. However, for
many, this drug is only affordable with insurance coverage.
Consequently, adversaries have a clear financial incentive to
deceive hospital diabetes classifiers to secure insurance cov-
erage for Ozempic.

In our study, we emphasize how adversaries can easily exe-
cute targeted attacks. Untargeted attacks are equally relevant
in healthcare settings and often easier to carry out. As men-
tioned previously, an attacker might seek any diagnosis other
than COVID-19 to avoid travel disruptions and restrictions.
Another scenario involves a pilot diagnosed with depression.
Under strict Federal Aviation Administration (FAA) regula-
tions, such a diagnosis can result in the loss of their pilot’s li-
cense. Regaining it is a complex process, requiring evaluation
by an FAA-approved specialist, passing extensive tests, and
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waiting up to six months for medical clearance. By tricking an
ML model into assigning any other mental health diagnosis,
a pilot could potentially bypass these hurdles entirely.

For both targeted and untargetd attacks, the barrier to entry
is alarmingly low. Adversaries can leverage freely available
resources, like Google or ChatGPT, to learn how to generate
adversarial examples. If needed, they could even hire ML
professionals via platforms like Upwork for a modest fee (e.g.,
$50/hour). Depending on the financial or personal benefits
of a misdiagnosis, such an investment could easily pay off.
Moreover, given the significant incentives and ease with which
an attack can be performed there is a significant need to ensure
medical AI systems are robust to adversarial examples.

6.2 Limitations

Our detection network demonstrated impressive results, but
we suspect two main factors contributed to this outcome.
First, the perturbations introduced may have been excessively
large, making the altered images easily detectable. This is
supported by the fact that nearly all UAP-perturbed images
were classified as COVID-19, suggesting that the single per-
turbation vector generated by UAP was large and conspicuous.
However, as shown in Figure 1, these perturbations are not
visually apparent and would likely go unnoticed without a
detection model. Second, the network’s strong performance
may stem from its training and evaluation being conducted
with gradient-based perturbations. Although we used different
types of gradient-based attacks for training and testing, there
was likely some learnable overlap. While gradient-based at-
tacks are the most common and successful in the literature,
adversarial attacks are not limited to these methods, and our
detection network might not perform as well against other
strategies, such as decision-boundary-based attacks. To en-
sure robustness, detection networks should be trained on a
diverse range of attack strategies, a task we leave for future
work.

Our work is also limited in that we don’t consider prac-
tical transformations on the adversarial examples. As men-
tioned previously, an adversary may print his X-ray that is
then scanned by a hospital exposing it to potential shifts in
pixel intensities and scales. While we considered UAP to en-
sure attacks are robust to these transformations, we lacked
the time and resources to adequately test the robustness of
these examples. In future work we plan to study the impact
transformations of the adversarial examples have on both the
hospital’s model and the hospital’s detection model.

Finally, our analysis is limited to a single dataset of images.
It remains to be seen whether these results can be replicated
in other datasets and with tabular data. Moreover, in future
work we plan to consider building adversarial examples and
detecting them on a wider range of datasets as well as in
tabular data.

7 Conclusion and Future Directions

This paper demonstrates the vulnerability of AI-based medical
diagnostics to adversarial examples and proposes a detection
framework to address this issue. In addition, we also explore
explainable AI techniques, such as Grad-CAM, that supple-
ments our adversarial detection framework and assists health-
care professionals to make X-ray diagnostics. For the future,
we can consider using a more comprehensive dataset with a
lot more training examples from various hospitals instead of
creating a diverse, simulated environment. Additionally, ex-
ploring how our UAP and PGD perturbations affect other deep
learning architectures could also be of keen interest. Overall,
our findings emphasize the need for secure and trustworthy
AI systems in healthcare.
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