
Designs, Codes and Cryptography
https://doi.org/10.1007/s10623-022-01124-1

A generalization of cyclic code equivalence algorithm to
constacyclic codes

Dev Akre1 · Nuh Aydin1 ·Matthew Harrington1 · Saurav Pandey1

Received: 27 February 2022 / Revised: 28 June 2022 / Accepted: 15 September 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Recently, a new algorithm to test equivalence of two cyclic codes has been introducedwhich is
efficient and produced useful results. In thiswork,wegeneralize this algorithm to constacyclic
codes. As an application of the algorithm we found many constacyclic codes with good
parameters and properties. In particular, we found 22 new codes that improve the minimum
distances of best known linear codes (BKLCs).

Keywords Quasi-cyclic codes · Best known codes · Reversible codes · LCD codes ·
Self-orthogonal codes

Mathematics Subject Classification 94B05 · 94B15

1 Introduction andmotivation

A linear code C over a finite field Fq is a vector subspace of Fn
q and it has three fundamental

parameters: the length (n), the dimension (k), and the minimum distance (d), and such a code
is referred to as a [n, k, d]q code. One most of the most important problems in coding theory
is the optimization of the minimum distance of a linear code. That is, for a given n and k,
we seek the highest possible d . There exist theoretical upper bounds on d . A code attaining
the upper bound for minimum distance is called (distance) optimal. It should be noted that
currently best known theoretical upper boundsmay actually be unattainable. One objective in

Communicated by G. Ge.

B Nuh Aydin
aydinn@kenyon.edu

Dev Akre
akre1@kenyon.edu

Matthew Harrington
harrington1@kenyon.edu

Saurav Pandey
pandey1@kenyon.edu

1 Department of Mathematics and Statistics, Kenyon College, Gambier, OH 43022, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-022-01124-1&domain=pdf
http://orcid.org/0000-0002-5618-2427

D. Akre et al.

coding theory is to find codes whose minimum distances get as close to the optimal distance
as possible. These are called BKLCs (best known linear codes). The online database [14]
gives information about BKLCs over small finite fields Fq , for q ≤ 9 up to certain lengths,
including lower and upper bounds on d . The upper bounds are theoretical, and lower bounds
are obtained by explicit constructions. In general, optimal codes are known when either
k or n − k is small. This is because calculating the minimum distance is computationally
intractable [24], and the number of linear codes of a given length and dimension is very large.
Consequently, exhaustive searches are not feasible. Hence, we focus on special classes of
codes that are promising.

In this paper, we focus on constacyclic (CC) codes which are a generalization of cyclic
codes. Cyclic codes have a prominent place in coding theory for both theoretical and practical
reasons. They provide a fundamental link between coding theory and algebra. Both cyclic
and CC codes are used as building blocks in various search algorithms, particularly the ASR
search algorithm, which have produced numerous record-breaking quasi-cyclic (QC) [5],
quasi-twisted (QT) [4, 6, 8, 16], and multi-twisted (MT) codes [1, 2]. Furthermore, they are
also used to produce quantum codes with good parameters [12, 18].

All of these algorithms benefit from having CC codes with high minimum weights. In a
comprehensive implementation of the ASR algorithm, we start with examining all cyclic or
CC codes of a given length. Since equivalent codes have the same parameters, it is redundant
to use CC codes that are equivalent to each other. Testing the equivalence between two
arbitrary linear codes is computationally expensive. However, an efficient algorithm that is
specifically designed for cyclic codes based on cyclotomic cosets has been recently presented
[7]. In this work, we generalize that algorithm to CC codes. Like the cyclic case, the resulting
algorithm is faster than the general purpose equivalence test algorithm that is available in
computer algebra systems like Magma. This enables us to conduct more extensive searches
on QC, QT and MT codes.

We ran exhaustive searches for CC codes up to a certain dimension for all finite fields
of size ≤ 9. We obtained a large number of CC codes with better parameters than the
best known QT codes given in the database [10]. A significant number of these codes have
additional desirable properties such as reversibility, self-orthogonality, and having linear
complementary dual (LCD). Furthermore, we found a new code over GF(7) with minimum
distance 3 units higher than the current BKLC and obtained 20 additional new codes using
the standard constructions on it. Another constacyclic code overGF(5) produced a new code
using construction X.

2 Basic definitions

Webegin by defining constacyclic (CC) codes.Note thatwewill be using the usual convention
of representing the codewords and vectors in Fn

q as polynomials in Fq [x]:
�c = (c0, c1, . . . , cn−1) ∈ F

n
q ↔ c(x) = c0 + c1x + · · · + cn−1x

n−1 ∈ Fq [x].
Definition 1 A linear codeC over Fq that is closed under a constacyclic shift πa by a nonzero
element a ∈ Fq is called a constacyclic code, that is, for any c = (c0, c1, . . . , cn−1) ∈ C ,
πa(c) = (a · cn−1, c0, c1, . . . , cn−2) ∈ C as well.

The CC shift of a codeword c(x) corresponds to x ·c(x) mod xn −a. It follows that a CC
code is an ideal in the quotient ring Fq [x]/〈xn − a〉 which is a principal ideal ring. For each
CC code C , there exists a unique monic generator polynomial g(x) ∈ Fq [x] of least degree

123

A generalization of cyclic code equivalence

such that 〈g(x)〉 = C . Hence, xn − a = g(x)h(x) and there is a one-to-one correspondence
between CC codes of length n with shift constant a over Fq and divisors of xn − a over Fq .
The polynomial h(x) is called the check polynomial ofC . A CC code is uniquely determined
by either the generator polynomial or the check polynomial. For the special case when the
shift constant a is 1, we obtain a cyclic code. Thus, CC codes are generalizations of cyclic
codes. CC codes are in turn are a special case of QT codes.

The concept of code equivalence is important in various contexts in coding theory. In
the case of computer searches for new linear codes, since equivalent codes have the same
parameters, it is unnecessary to examine codes that are equivalent. Two linear codes over
Fq are called equivalent if one can be obtained from the other by any combination of the
following transformations.

1. A permutation of the coordinates.
2. Multiplication of elements in a fixed position by a non-zero scalar in Fq .
3. Applying a field automorphism σ : Fq → Fq to each component of a vector.

If only (1) is used, then the codes are called permutation equivalent. This is a very important
special case since it arises most commonly. Moreover, for binary codes it is the only form of
equivalence. We can summarize all of these conditions in the following way.

Definition 2 [17] Two linear codes C1,C2 ⊆ F
n
q are equivalent if there exists a monomial

matrix M and an automorphism σ over Fq such that C1 = C2Mσ .

In an implementation of a computer search algorithm, checking for equivalencewith codes
that have alreadybeen examinedbefore calculating theminimumdistance of a newcodemight
save computational time provided this check is fast enough. There exists a polynomial time
reduction from the graph isomorphism problem to code equivalence and thus equivalence
checking is not NP-complete [22]. However, in practice these checks a long time, especially
for codes of larger lengths. The special case of testing the equivalence of two cyclic code can
be faster as demonstrated in [3]. Our goal in this paper is to generalize this algorithm to CC
codes.

Through our exhaustive searches, we found many codes that are as good as the currently
BKLCs and they additional desirable properties. We define these properties here. For any
linear code C , its dual code is defined as C⊥ = {v ∈ F

n
q : v · c = 0 for all c ∈ C} where

v · c is the standard inner product in F
n
q . If the dimension of C is k, then the dimension of

C⊥ is n − k. A code C is self-orthogonal if C ⊆ C⊥, i.e., for any two codewords a, b ∈ C ,
a · b = 0. An [n, k]q code C is self-dual if C = C⊥. Note that in this case, the dimensions
of C and C⊥ need to be equal, thus k = n/2. A code C is dual-containing if C⊥ ⊆ C . All of
these properties of codes have been used extensively to find optimal quantum error-correcting
codes [9, 13, 23].

An [n, k]q code C is linear complementary dual (LCD) if C ∩C⊥ = {0}. They were first
introduced by Massey [21], and were seen to have an optimal solution for a two-user binary
adder channel as well as decoding algorithms that are less complex than that for general
linear codes. They are also useful in cryptography by protecting the information managed by
sensitive devices, particularly against fault invasive attacks and side-channel attacks (SCA)
[19].

A code C is reversible if for any codeword (c0, c1, . . . , cn−2, cn−1) ∈ C its reverse
(cn−1, cn−2, . . . , c1, c0) is also a codeword. Reversible codes are useful in cases where the
code might be read from any direction [20]. They are also very important for the study of
DNA codes.

123

D. Akre et al.

Let C be a linear code and w(c) denote the Hamming weight of codeword c ∈ C . If w

takes at most two distinct nonzero values for all c ∈ C , we call C a two-weight code. These
codes have important applications in secret-sharing schemes, and are mathematically related
to strongly related graphs [11].

3 On equivalence of constacyclic codes

Cyclotomic cosets are useful in the study of cyclic codes in many ways. They give much
information about a cyclic code and they are particularly useful for certain types of cyclic
codes such asBCHcodes. Recently, sufficient conditions for two cyclic codes to be equivalent
are obtained from cyclotomic cosets [3, 6, 7]. In this work, we generalize some of these results
to CC codes.

Definition 3 [4] Let gcd(n, q) = 1. For any i ∈ Zn , the q-cyclotomic coset of n containing
i is the set Si = {iq j mod n : j ∈ N}.

It is well known that in the case gcd(n, q) = 1 (simple root cyclic codes), there is a
one-to-one correspondence between cyclotomic cosets mod n and irreducible divisors of
xn−1. Each divisor g(x) of xn−1 corresponds to a union Sg(x) of cyclotomic cosets mod n.
Following results about equivalence of cyclic codes are obtained based on cyclotomic cosets
in [7].

Theorem 1 [7] Let g1(x)and g2(x)be the standard generators of cyclic codes of length n over
Fq and assume gcd(e, n) = 1. Then the isometry φ : Fq [x]/〈xn − 1〉 �→ Fq [x]/〈xn − 1〉
given by x �→ xe mod (xn − 1) has the property g2(x) = φ(g1(x))) if and only if the map
φ : Sg1 �→ Sg2 given by φ(z) = e−1z mod n, where e−1 is the multiplicative inverse of e
mod n, is a bijection.

Theorem 2 [7] Let g1(x) be the standard generator of a cyclic code of length n over Fq

where gcd(n, q) = 1, and let δ = α−b where α is a primitive nth root of unity, such that n
divides b · deg(g1(x)) · (q − 1). Let K be an extension field of Fq that contains δ. Then the
isometry φ : K [x]/〈xn − 1〉 �→ K [x]/〈xn − 1〉 defined by φ(f (x)) = f (δx) mod (xn − 1)
has the property that φ(g1(x)) ∈ Fq [x] and generates a cyclic code of length n over Fq if
and only if the map φ : Zn �→ Zn defined by φ(z) = z + b mod n is a bijection such that
φ(Sg1) = Sφ(g1).

In a recent work [3], this correspondence is extended to the repeated root case by consider-
ing multisets. Suppose gcd(n, q)
= 1, where q is a power of p. We first write n = n′ pt such
that gcd(p, n′) = 1. Next we find the cyclotomic cosets mod n′. Define a function P which
takes cyclotomic cosets to polynomials. Let α be an n′th root of unity, and S be a cyclotomic
coset mod n′. We define P(S) =

∏
i∈S(x − αi). Then we use amultiset to describe unions

where if an irreducible factor of xn − 1 appears multiple times (say m times) in a divisor,
then the elements of the cyclotomic coset that corresponds to that divisor appear m times in
the multiset. Hence, a multiset MS is a union of not necessarily distinct cyclotomic cosets
S1, S2, . . . , Sk and it corresponds to the polynomial P(MS) = P(S1) · P(S2) · · · P(Sk).
Based on this approach, an algorithm to test equivalence of cyclic codes is given in [3].

We now generalize these results to CC codes. The following observation is very useful
for us to be able to generalize them for constacyclic codes.

123

A generalization of cyclic code equivalence

Consider the polynomial xn − a over Fq , where p is the characteristic of Fq . Given n,
write n = ptn′ such that p does not divide n′. Then, since the map x → x pt is a bijection
(even an automorphism) on Fq , there exists b ∈ Fq such that a = bpt , hence we can write
xn − a = (xn

′ − b)p
t
.

Lemma Given a and b as above, we have |a| = |b|, where |θ | denotes the order of θ in the
multiplicative group F∗

q .

Proof Let α be a primitive element of Fq . Then for some integer j , b = α j , and subsequently
a = α j pt . Thus we want to show that |α j | = |α j pt |. The proof is based on the following
well-known theorem from group theory. In a finite cyclic group generated by g, the order of

a power of g is given by |gi | = |g|
gcd(|g|, i)

From this and the fact that |α| = q − 1 it follows that |α j | = q − 1

gcd(q − 1, j)
and

|α j pt | = q − 1

gcd(q − 1, j pt)
As p is the characteristic of Fq , we have q = pm for some positive

integerm, and therefore pt is relatively prime toq−1.Hence gcd(q−1, j) = gcd(q−1, j pt),
and |α j | = |α j pt |. Thus, |a| = |b|. ��
Theorem 3 Let g1(x), g2(x) be generators of constacyclic codes of length n over Fq with
shift constant a (hence g1(x), g2(x) are divisors of xn − a). If there is a bijection m of the
form m(x) = ex + b, where gcd(e, n) = 1 and b is as given in [7, Theorem 3], between
cyclotomic cosets mod nr corresponding to g1(x) and g2(x), then the constacyclic codes
〈g1(x)〉 and 〈g2(x)〉 are equivalent.
Proof We know that g1(x)|(xn − a)|xnr − 1 and g2(x)|(xn − a)|xnr − 1. Hence, g1(x)
and g2(x) generate cyclic codes of length nr over Fq . Let K be the extension of Fq as in [7,
Theorem 3].Writingm(x) = m2(m1(x))wherem1(x) = ex andm2(x) = x+b, we observe
that there is an isometry� from K [x]/〈xnr−1〉 to K [x]/〈xnr−1〉 such that g2(x) = �(g1(x))
and cyclic codes of length nr generated by g1(x) and g2(x) are equivalent by Theorems 2, 3,
and the remark that follows them in [7]. Since Fq [x]〈xn −a〉 is a subring of K [x]/〈xnr −1〉,
� induces an isometry from Fq [x]〈xn − a〉 to itself such that g2(x) = �(g1(x)). Hence the
CC codes of length n generated by g1(x) and g2(x) are equivalent. ��

4 The generalized algorithm

We now describe our approach in developing an algorithm for checking equivalence based
on the theory discussed in the last section. We first obtain r = Ordq(a), p = char(Fq) and
n′ such that n = n′ · pt . After finding an n′ · r th root of unity (δ), for i = 0, 1, . . . , n′ − 1
we form cyclotomic cosets mod n′r of the exponents of δ of the form 1 + i · r . We then
take unions of multi-sets of elements of these cosets where the multiplicity of an element is
between 0 and pt . Each multiset corresponds to a polynomial.

Checking for a linear map is computationally expensive. The most straight-forward
approach is to try all values of a, b ∈ {0, . . . , n′} such that gcd(a, n) = 1 and for each
x ∈ C1, ax +b ∈ C2. If such pair of values exist then the codes are equivalent. The complex-
ity of this process is O(n3). We save a lot of time by checking if the sum of multiplicities of
the elements as well as their frequency distribution are identical before starting to check for
a linear map.

123

D. Akre et al.

Another matter of note is that the choice of the root of unity δ affects the code that will
be stored from an equivalence class. Since different choices for δ give equivalent codes from
the same classes, this is not a problem for our purposes.

Algorithm 1 Algorithm to decide equivalence between two CC codes based on cosets
Input: F (Finite Field of size q), n (Length), a (Shift Constant), g1 and g2

(generator polynomials of C1 and C2)
Output: True (if algorithm detects equivalence), False (otherwise)
Function CC_CosetEq(F, n, a, g1, g2):

r = Order(a) p = Characteristic(F) n′ such that n = n′ · (p)t for highest possible t ∈ N

EF = ExtensionField(F) defined by irreducible polynomial in F[x] of degree (Order(n′ ·r mod q))

elements = [1 + i · r : i from 0 to n′ − 1] rou = (n′r)th root of unity in EF
for i in elements do

coset1[i] is the largest integer y such that (x − roui)y |g1 coset2[i] is the largest integer y such that
(x − roui)y |g2

end
Equivalent = false if Sum(coset1) == Sum(coset2) then

if FrequencyDistribution(coset1) == FrequencyDistribution(coset2) then
if existsLinearMap(coset1,coset2) then

Equivalent = true
end

end
end
return Equivalent

5 Performance and limitations

The following table compares our CC_CosetEq Function with Magma’s IsEquivalent Func-
tion. It can be seen that our method is always faster, considerably so in cases where the codes
are actually equivalent. However, Magma’s function is more versatile while our method is
tailor-made for CC codes. Since Magma has no other version of testing code equivalence
available, we will make the comparison between our algorithm and Magma’s algorithm. In
the tables below, a polynomial is represented as a list containing only coefficients in order
to save space. The ordering is such that coefficients of lowest degree term is in the left-most
position. For instance, the polynomial 1 · x + 2 · x2 + 3 · x3 will be represented as [0123].
The online Magma calculator [15] is used for the comparison. It has a time limit of 120
seconds and memory limit of about 360 MB. The entries in the table with “DNF” refers to
the programs that did not finish either due to the online calculator’s time or memory limit.
The Magma IsEquivalent Function also only works for small prime fields or fields of size
less than or equal to 4. In Table 1, A is a root of the irreducible polynomial x2 + x + 1 over
F2 and a primitive element of F4.

It is important to note that the algorithm only checks for a sufficient condition of equiv-
alence. This means that the function might return False even if the codes are actually
equivalent. For instance, consider the constacyclic codes with n = 32, a = 1 with gen-
erators g1 = 222120111202021, g2 = 222112021022021. Our algorithm does not detect
equivalence between these codes even though they actually are equivalent. However, com-
putational evidence seems to suggest that this is a rare occurrence. The next section about
partitioning CC codes into equivalence classes furthermore shows that in many cases the
number of codes that need to be searched is reduced by a large amount. We can also check
for equivalence in GF(8) and GF(9), which was not possible with Magma’s function. Thus,

123

A generalization of cyclic code equivalence

Ta
bl
e
1

Pe
rf
or
m
an
ce

co
m
pa
ri
so
n
of

C
os
et
E
q
m
et
ho

d
vs

in
bu
ilt

Is
E
qu

iv
al
en
tf
un

ct
io
n

q
n

g(
s)

a
eq
ui
v

C
C
_C

os
et
E
q

Is
E
qu

iv
al
en
t

C
PU

tim
e(
s)

M
em

or
y
(M

B
)

C
PU

tim
e(
s)

M
em

or
y
(M

B
)

2
21

0
[11

10
01

10
01

10
01

00
1]

[11
00

01
10

01
10

10
10

1]
1

T
ru
e

0.
12

0
32

10
1.
30

0
32

3
90

[12
01

1]
[11

02
1]

2
Fa
ls
e

0.
00
0

32
D
N
F-
M
em

or
y
lim

it

4
60

[A
00

10
01

][
A
00

A
00

1]
A

T
ru
e

0.
00

0
32

0.
70

0
32

5
68

[11
43

41
31

13
24

02
02

1]
[14

42
44

34
12

21
03

03
1]

3
T
ru
e

0.
02
0

32
D
N
F-
T
im

e
lim

it

7
53

[43
03

40
63

55
06

06
03

03
63

50
46

03
1]

[46
01

50
60

40
34

30
62

30
20

50
52

06
1]

4
Fa
ls
e

0.
02
0

32
D
N
F-
T
im

e
lim

it

123

D. Akre et al.

for the goal of executing an exhaustive search on CC codes, we find our method more viable
even with the potential for rare occurrence of redundancies.

6 Applications of the algorithm

We can use the the algorithm given in Sect. 4 to partition all CC codes of a given length
and shift constant into equivalence classes. It is purely based on cyclotomic cosets and their
combinations. We break the list of all relevant exponents of the root of unity (δ) into the
component cyclotomic cosets mod n′ · r . Then we take unions of not necessarily distinct
cosets up to pt times. Using the new algorithm we check if the codes generated by this union
of cosets is equivalent to any previously seen code. In the end, we convert the multisets to
generator polynomials using the map P we defined in Sect. 3 and store them.

Algorithm 2 Algorithm that returns list of unequivalent generators for CC codes of length
n, shift constant a
Input: q (size of finite field), n (Length), a (Shift Constant)
Output: generatorList (Unequivalent generators dividing xn − a)
F = FiniteField(q) r = Order(a) p = Characteristic(F) n′ such that n = n′ · (p)t for highest
possible t ∈ N EF = Ext Field(F) defined by irreducible polynomial in F[x] of degree (Order(n′ · r
mod q)) CycCosets = [] elements = [1 + i · r : i from 0 to n′ − 1] for i in elements do

if i not in CycCosets then
CycCosets+= {iq j : j = 0, 1, . . .}

end
end
numCosets = #CycCosets rou = (n′r)th root of unity in EF totalnum = (pt + 1) ∧ numCosets − 2;
(Non-trivial divisors of xn − a) UneqCosets = [], generatorList = [] for i from 1 to totalnum
do

TempCoset = {}; (Multi-Set)
for j from 1 to numCosets do

TempCoset += CycCosets[j] ∧ (j th Digi t(i))
end
Equivalent = false for CheckCoset in UneqCosets do

if Sum(CheckCoset) == Sum(TempCoset) then
if Distribution(CheckCoset) == Distribution(TempCoset) then

if existsLinearMap(CheckCoset,TempCoset) then
Equivalent = true

end
end

end
end
if Equivalent == true then

UneqCosets+= TempCoset generator = 1 for j in TempCoset do
generator*= (x − rou j)(Multiplici t y(j))

end
generatorList+= generator

end
end
Print(generatorList)

Table 2 shows the effectiveness of our constacyclic partition algorithm for some sample
code lengths. Here, q is the size of the finite field, n represents the length of the code, a
represents the shift constant, total represents the total number of divisors of xn − a, new

123

A generalization of cyclic code equivalence

Table 2 Reduction in the number
of codes from our algorithm

q n a Total New Net Percent decrease

2 93 1 16,382 2798 13,584 82.92

2 105 1 32,766 9598 23,168 70.71

2 120 1 59,047 32,803 26,244 44.45

2 124 1 78,123 13,173 64,950 83.14

3 146 2 8190 536 7654 93.46

3 122 2 8190 455 7735 94.44

3 130 2 32,766 969 31,797 97.04

5 124 2 2046 26 2020 98.73

5 90 2 7774 3074 4700 60.46

5 52 2 8190 1380 6810 83.15

5 104 2 8190 469 7721 94.27

5 52 4 16,382 2129 14,253 87.00

5 108 4 16,382 1269 15,113 92.25

5 60 4 46,654 12,839 33,815 72.48

5 120 4 46,654 696 45,958 98.51

7 76 6 16,382 1126 15,256 93.13

7 90 6 32,766 1519 31,247 95.36

7 86 6 32,766 655 32,111 98.00

represents the number of polynomials generated by our algorithm, and net represents the
difference between total and new. Here, net is the reduction in the number of codes due
to code equivalence and thus is a good indication of a possible benefit of our algorithm
when considering a code of a given length. The final column, Percent decrease, shows the
percentage of reduction in the total number of codes due to our algorithm. This value is
simply the ratio of net to total multiplied by 100.

7 Results

This section contains our findings from an implementation of the partition algorithm. Tables
3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 below show CC codes obtained from our searches using the
new algorithm. These codes are as good as the current BKLCs [14], and better than currently
known QT Codes [10]. Furthermore, the ones listed here have additional properties by which
they are classified into tables. For brevity’s sake, we only list some of all (638) such codes
we obtained in Table 3 through Table 13.

The first column specifies the parameters of the code, the second lists the shift constant,
and the third column gives either the generator g or the parity check polynomial h, whichever
is more concise. For GF(4),GF(8) and GF(9), the primitive polynomials x2 + x +1, x3 +
x+1 ∈ GF(2)[x] and x2+2x+2 ∈ GF(3)[x] are used to extend the field. For all non-prime
fields, A is the primitive element, that is, the root of the primitive polynomial we used for
extensions.

We have found 453 more codes that are better than best known QT codes and as good as
current BKLCswithout any additional properties. However, they are very simple to construct.
Many of the BKLCs with the same parameters as our codes have complicated constructions

123

D. Akre et al.

Table 3 CC codes that are self-orthogonal (19 of 122)

[n, k, d]q a h

[91, 39, 20]2 1 1100001011011010010010100011110110111111

[79, 39, 16]2 1 1110110000010110101111001111011100011001

[223, 37, 72]2 1 11111000101011001111101100111000101101

[83, 41, 21]3 1 221200201021221100222200221210011200121201

[164, 26, 72]3 2 222120021201020122012210021

[82, 24, 30]3 2 1222011211212222111201211

[19, 9, 8]4 1 1A20A2A2AA0A1

[129, 21, 64]4 1 111A0A2A211AAA2A211AA0A2111

[38, 18, 13]5 1 4142302342133022111

[52, 14, 25]5 4 322133301433401

[31, 12, 14]5 1 1403040341241

[47, 23, 17]7 1 654323415250330435200061

[50, 20, 20]7 6 112364342641233364261

[85, 16, 48]7 1 12105062226642241

[79, 13, 49]8 1 1A41A4A5A6A300A6AA5A61

[19, 9, 10]9 1 2A52A2A3A5A21A31

[31, 15, 12]9 1 2A5A3A7A32A6A7AA61A5AA5A31

[37, 18, 14]9 1 1A310A6A5A12221A3A7A201A1

Table 4 CC codes that are dual containing (16 of 139)

[n, k, d]q a g

[133, 112, 6]2 1 1110101111110000110001

[151, 106, 13]2 1 1010100111001100110111000110110101001010111001

[93, 48, 14]2 1 1001111001101000011101000000011001000010110001

[109, 82, 10]3 1 2220110212021200001101101101

[82, 58, 10]3 2 1100210002021101000220021

[133, 112, 8]4 1 1A20A2A2A2A2AAA2A2110AA001AA21

[71, 51, 10]5 1 103402021440032402131

[52, 34, 10]5 4 3103324404332410421

[44, 23, 12]5 1 2044142410012132403401

[58, 44, 8]7 1 650012241422041

[40, 28, 8]7 6 1060426323511

[47, 24, 16]7 1 610005243044025263454321

[79, 66, 8]8 1 1A6A5AA600A3A6A5A41A41

[37, 28, 7]9 1 2A61A6AA7A62A61

[31, 16, 11]9 1 2A7AA5A2A2A5A3A21A7A3A7A1

[37, 19, 13]9 1 1A10A2A7A312221AA5A601A31

123

A generalization of cyclic code equivalence

Table 5 CC codes that are LCD (12 of 79)

[n, k, d]q a g or h

[57, 30, 14]4 A 111AA2A2AAA2A11111111A2AA2A2AAA2111

[105, 84, 8]4 A A2000AA2A200A2A2A0A2A01A2AA01

[171, 18, 96]4 A h = A200AA201A20A01A201A001

[68, 52, 8]5 2 11040231132244121

[52, 24, 17]5 2 h = 4023014140102413440204101

[46, 24, 13]5 2 31443110010104003414241

[86, 72, 8]7 3 440151543452041

[40, 20, 14]7 3 h = 262441353161263215461

[50, 16, 26]7 3 h = 24632222431542661

[10, 6, 5]9 A A2A7A2A61

[34, 26, 6]9 A 2A3A5A71A6A311

[58, 14, 33]9 A h = A7A6A501A6A7AA62A50111

Table 6 Codes that are reversible
(19 of 29)

[n, k, d]q a g or h

[204, 191, 4]2 1 10101100110101

[180, 166, 4]2 1 111010101010111

[168, 154, 4]2 1 100110000011001

[72, 61, 4]2 1 110101101011

[30, 23, 4]3 1 11122111

[12, 7, 4]3 1 101101

[6, 3, 3]3 1 h = 1221

[34, 20, 8]4 1 111A2A01010AA2111

[68, 61, 4]4 1 1A2A00AA21

[65, 58, 4]5 1 40141401

[30, 25, 4]5 1 142241

[15, 10, 4]5 1 424131

[56, 50, 4]7 1 1124211

[56, 45, 6]7 1 166534435661

[18, 11, 6]8 1 1A51A6A61A51

[18, 14, 4]8 1 1A20A21

[36, 31, 4]8 1 1A6A2A2A61

[30, 25, 4]9 1 1A311A31

Table 7 CC codes that are
self-dual

[n, k, d]q a h

[28, 14, 9]3 2 221211000122221

[8, 4, 5]7 6 15221

123

D. Akre et al.

Table 8 CC codes that are
self-orthogonal and reversible

[n, k, d]q a h

[10, 3, 6]4 1 1A2A21

[7, 3, 5]7 1 6341

[18, 3, 14]8 1 1A3A31

Table 9 CC codes that are
dual-containing and reversible (4
of 9)

[n, k, d]q a g

[10, 7, 3]5 1 4411

[56, 52, 3]7 1 16361

[56, 51, 4]7 1 102201

[28, 23, 4]7 1 134431

Table 10 CC codes that are LCD and reversible (20 of 245)

[n, k, d]q a g or h

[171, 134, 10]2 1 10010000001000110111101100010000001001

[129, 87, 13]2 1 1011111011001100111011101110011001101111101

[65, 40, 10]2 1 10001101101011010110110001

[146, 122, 8]3 1 1122121011100011101212211

[82, 49, 14]3 1 1211200010200021001200020100021121

[74, 38, 16]3 2 1101011222112200022200022112221101011

[29, 15, 11]4 1 1A0AA21A2AA21A2A0A1

[65, 33, 16]4 1 1A2A20AA01A2100A21101011A2001A210AA0A2A21

[241, 228, 6]4 1 1A21A00AA00A1A21

[67, 23, 27]5 1 h = 421134030211443020124431

[67, 22, 28]5 1 h = 14324002204340220042341

[41, 21, 13]5 1 100203331020133302001

[29, 14, 12]5 1 h = 144224030422441

[50, 21, 20]7 1 h = 6515262441166335152621

[29, 15, 11]7 1 104516141615401

[57, 13, 33]8 1 h = 1A2A3A5A60A3A30A6A5A3A21

[65, 52, 8]8 1 1A6A3A4A2A311A3A2A4A3A61

[29, 14, 12]9 1 h = 1A1A2A32A2A2A22A3A21A1

[41, 24, 12]9 1 2A6A7A5A6A6A70A2A60A3A2A2AA3A21

[73, 12, 47]9 1 h = 1A50AA60A30A6A0A51

Table 11 CC codes that are
self-orthogonal and two-weight
(3 of 6)

[n, k, d]q a h

[7, 3, 4]4 1 1011

[22, 5, 12]3 1 102221

[12, 4, 6]3 2 11221

123

A generalization of cyclic code equivalence

Table 12 CC codes that are LCD
and two-weight

[n, k, d]q a h

[17, 4, 12]4 1 11A11

[26, 4, 20]5 2 41331

Table 13 CC codes that are
self-orthogonal, two-weight and
reversible

[n, k, d]q a h

[34, 4, 24]4 1 11A11

[10, 4, 4]2 1 11111

involving multiple steps. For instance, consider the BKLC [68, 52, 8]5 from http://www.
codetables.de [14] is constructed in 7 seven steps. Our construction for a code just as good is
just one step- CC code with length 68, shift constant 2 and generator 11040231132244121.
This construction is less complicated and the code is easier to replicate. Thus, our codes are
better alternatives than the ones listed in the database with the same parameters. Additionally,
we have found a total of 23 new linear codeswith higherminimumdistances than the currently
BKLCs listed in [14].

We found a new [65, 51, 8]5 code from our search results using construction X. This code
is better than currently known linear codes and can be constructed as follows:

1 : [63, 51, 6] Constacyclic Code over GF(5) a = 1, g = 1133013103311
2 : [63, 50, 8] Constacyclic Code over GF(5) a = 1, g = 40303432120201
3 : [2, 1, 2] Cyclic Linear Code over GF(5) RepetitionCode of length 2
4 : [65,51,8] Linear Code over GF(5) Construct X using [1], [2] and [3]

We also found a [93, 15, 58]7 code whose minimum distance is 3 units larger than the cur-
rent BKLChaving same length and dimension. [93,15,58] Constacyclic Code overGF(7) a =
2, g = 43402635422214201415366235634564641411415021506102146342030122462013
52136540611

8 Recursive standard constructions

In the course of the search, we found codes that beat the currently best known minimum
distances by more than one unit. In the case of the [93, 15, 58]7 code, its minimum distance
was 3 higher than the BKLC that preceded it. This means that there was high potential
for other codes derived from this code to produce additional record breakers by using such
standard constructions as extension, puncturing, and shortening. All of these constructions
are implemented in Magma [15] by the help of the following algorithm:

Through the use of this algorithm,we found 20 new codes stemming from the [93, 15, 58]7
code, C1. Any code derived from C1 or its derivative by extension, puncturing or shortening
is the name of original code appended by ’e’,’p’ or ’s’ respectively. For instance C1ees is C1
extended twice and then shortened once. Puncturing and shortening is done from the best
position possible.We also indicate, for each code, the improvement on the minimum distance
of the previously best known linear code with the same length and dimension. For example,
C1 : [93, 15, 58],+3 means the previous record was [93, 15, 55] and our code C1 improves
the minimum distance by 3 units.

123

http://www.codetables.de
http://www.codetables.de

D. Akre et al.

Algorithm 3 Recursive Code Modification
Input: C: A good code with parameters [n, k, d]q Input: ShortenLimit: A constant that will determine how
many places we can shorten at once Function RecursivelyModify(C,foundparams):

Function Check(C,foundparams):
if Cprime is better than the corresponding BKLC and Parameters(Cprime) not in foundparams then

Print(Cprime) return Concatenate(foundparams,RecursivelyModify(Cprime,foundparams);
end
return []

foundparams = Append(foundparams,Parameters(C)) Cprime=ExtendCode(C) foundparams+=
Check(Cprime,foundparams)
CprimeP=CprimeS= [1,1,1] trivial code for s from 1 to n do

CtempP=PunctureCode(C,i) CtempS=ShortenCode(C,s) if CtempP is better than CprimeP then
CprimeP=CtempP

end
if CtempS is better than CprimeS then

CprimeS=CtempS
end

end
foundparams+= Check(CprimeP,foundparams) foundparams+= Check(CprimeS,foundparams) return
foundparams

RecursivelyModify(C,[]);

C1: [93,15,58], +3 C1pp: [91,15,56], +3

C1e: [94,15,58], +2 C1ppp: [90,15,56], +3

C1ee: [95,15,58], +1 C1pppp: [89,15,56], +4

C1ees: [94,14,58], +1 C1ppppp: [88,15,56], +5

C1eesp: [93,14,58], +1 C1pppppp: [87,15,56], +5

C1eespp: [92,14,58], +2 C1ppppppp: [86,15,56], +6

C1eespppp: [90,14,56], +1 C1pppps: [88,14,54], +1

C1eesppps: [90,13,57], +1 C1sppp: [89,14,55]*a

C1eespps: [91,13,58], +2 C1ppss: [89,13,56], +1

C1eesps: [92,13,58], +1 C1ppssp: [88,13,55], +1

C1p: [92,15,57], +3
aWe originally found a [89,14,54]-code. In the process of verifying our codes, M. Grassl found this one

This algorithm is especially useful for producing new codes from a good code which beats
the corresponding minimum distance record by more than 1 unit. A Magma file to execute it
can be obtained by contacting the authors of this paper.

References

1. Aydin N., Guidotti T., Liu P.: Good classical and quantum codes from multi-twisted codes. CoRR
arXiv:2008.07037 (2020)

2. Aydin N., Halilović A.: A generalization of quasi-twisted codes: multi-twisted codes. Finite Fields Appl.
45, 96–106 (2017). https://doi.org/10.1016/j.ffa.2016.12.002.

3. Aydin N.O., Vandenberg R.O.: A new algorithm for equivalence of cyclic codes and its applications.
Appl. Algebra Eng. Commun. Comput. (2021). https://doi.org/10.1007/s00200-021-00525-4.

4. Aydin N., Siap I., Ray-Chaudhuri D.K.: The structure of 1-generator quasi-twisted codes and new linear
codes. Des. Codes Cryptogr. 24(3), 313–326 (2001). https://doi.org/10.1023/a:1011283523000.

5. Aydin N., Connolly N., Murphree J.: New binary linear codes from quasi-cyclic codes and an augmenta-
tion algorithm. Appl. Algebra Eng. Commun. Comput. 28(4), 339–350 (2017). https://doi.org/10.1007/
s00200-017-0327-x.

123

http://arxiv.org/abs/2008.07037
https://doi.org/10.1016/j.ffa.2016.12.002
https://doi.org/10.1007/s00200-021-00525-4
https://doi.org/10.1023/a:1011283523000
https://doi.org/10.1007/s00200-017-0327-x
https://doi.org/10.1007/s00200-017-0327-x

A generalization of cyclic code equivalence

6. Aydin N., Connolly N., Grassl M.: Some results on the structure of constacyclic codes and new linear
codes over GF(7) from quasi-twisted codes. Adv. Math. Commun. 11(1), 245–258 (2017). https://doi.
org/10.3934/amc.2017016.

7. Aydin N., Lambrinos J., Vandenberg O.: On equivalence of cyclic codes, generalization of a quasi-twisted
search algorithm, and new linear codes. Des. Codes Cryptogr. 87(10), 2199–2212 (2019). https://doi.org/
10.1007/s10623-019-00613-0.

8. Aydin N., Guidotti T.H., Liu P., Shaikh A.S., Vandenberg R.O.: Some generalizations of the ASR search
algorithm for quasitwisted codes. Involve J.Math.13(1), 137–148 (2020). https://doi.org/10.2140/involve.
2020.13.137.

9. Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction and orthogonal geom-
etry. Phys. Rev. Let. 78(3), 405–408 (1997). https://doi.org/10.1103/physrevlett.78.405.

10. Chen E.: Quasi-cyclic codes: bounds on the parameters of of QC codes. http://www.tec.hkr.se/~chen/
research/codes/qc.htm. Accessed Aug 2021

11. Ding K., Ding C.: A class of two-weight and three-weight codes and their applications in secret sharing.
IEEE Trans. Inf. Theory 61(11), 5835–5842 (2015). https://doi.org/10.1109/tit.2015.2473861.

12. Dinh H.Q., Bag T., Upadhyay A.K., Ashraf M., Mohammad G., Chinnakum W.: Quantum codes from
a class of constacyclic codes over finite commutative rings. J. Algebra Appl. 19(12), 2150003 (2019).
https://doi.org/10.1142/s0219498821500031.

13. Gottesman D.: Class of quantum error-correcting codes saturating the quantum hamming bound. Phys.
Rev. A 54(3), 1862–1868 (1996). https://doi.org/10.1103/physreva.54.1862.

14. Grassl M.: Code tables: bounds on the parameters of codes. http://www.codetables.de/. Accessed Aug
2021

15. GroupM.: Magma computer algebra system. http://magma.maths.usyd.edu.au/calc/. Accessed Aug 2021
16. Gulliver T.A., Venkaiah V.C.: Construction of quasi-twisted codes and enumeration of defining polyno-

mials. J. Algebra Comb. Discret. Struct. Appl. (2019). https://doi.org/10.13069/jacodesmath.645015.
17. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cam-

bridge (2003) https://doi.org/10.1017/cbo9780511807077.
18. Koroglu M., Siap I.: A class of constacyclic codes from group algebras. Filomat 31(10), 2917–2923

(2017). https://doi.org/10.2298/fil1710917k.
19. Lu L., Li R., Fu Q., Xuan C., Ma W.: Optimal ternary linear complementary dual codes. CoRR

arXiv:2012.12093 (2020)
20. Massey J.L.: Reversible codes. Inf. Control 7(3), 369–380 (1964). https://doi.org/10.1016/s0019-

9958(64)90438-3.
21. Massey J.L.: Linear codes with complementary duals. Discret. Math. 106–107, 337–342 (1992). https://

doi.org/10.1016/0012-365x(92)90563-u.
22. Petrank E., Roth R.: Is code equivalence easy to decide? IEEE Trans. Inf. Theory 43(5), 1602–1604

(1997). https://doi.org/10.1109/18.623157.
23. Steane A.M.: Error correcting codes in quantum theory. Phys. Rev. Let. 77(5), 793–797 (1996). https://

doi.org/10.1103/physrevlett.77.793.
24. Vardy A.: The intractability of computing the minimum distance of a code. IEEE Trans. Inf. Theory 43(6),

1757–1766 (1997). https://doi.org/10.1109/18.641542.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

123

https://doi.org/10.3934/amc.2017016
https://doi.org/10.3934/amc.2017016
https://doi.org/10.1007/s10623-019-00613-0
https://doi.org/10.1007/s10623-019-00613-0
https://doi.org/10.2140/involve.2020.13.137
https://doi.org/10.2140/involve.2020.13.137
https://doi.org/10.1103/physrevlett.78.405
http://www.tec.hkr.se/~chen/research/codes/qc.htm
http://www.tec.hkr.se/~chen/research/codes/qc.htm
https://doi.org/10.1109/tit.2015.2473861
https://doi.org/10.1142/s0219498821500031
https://doi.org/10.1103/physreva.54.1862
http://www.codetables.de/
http://magma.maths.usyd.edu.au/calc/
https://doi.org/10.13069/jacodesmath.645015
https://doi.org/10.1017/cbo9780511807077
https://doi.org/10.2298/fil1710917k
http://arxiv.org/abs/2012.12093
https://doi.org/10.1016/s0019-9958(64)90438-3
https://doi.org/10.1016/s0019-9958(64)90438-3
https://doi.org/10.1016/0012-365x(92)90563-u
https://doi.org/10.1016/0012-365x(92)90563-u
https://doi.org/10.1109/18.623157
https://doi.org/10.1103/physrevlett.77.793
https://doi.org/10.1103/physrevlett.77.793
https://doi.org/10.1109/18.641542

	A generalization of cyclic code equivalence algorithm to constacyclic codes
	Abstract
	1 Introduction and motivation
	2 Basic definitions
	3 On equivalence of constacyclic codes
	4 The generalized algorithm
	5 Performance and limitations
	6 Applications of the algorithm
	7 Results
	8 Recursive standard constructions
	References

